This site is being phased out.

Wave equation

From Mathematics Is A Science
(Redirected from Wave Propagation)
Jump to navigationJump to search

The PDE of wave propagation

Just as before, we will provide the mathematics to describe the following three parts of the setup:

  • the topology of the cell complex $L$ of the objects and springs,
  • the geometry given to that complex such as the lengths of the springs, and
  • the physics represented by the parameters of the system such as those of the objects and springs.

Let $u(t,x)$ be the function that measures the displacement from the equilibrium of the object associated with position $x$ at time $t$ (we will suppress $t$). It is an algebraic quantity: $$u=u(t,x)\in R \times R.$$ As such, it can represent quantities of any nature that may have nothing to do with a system of objects and springs; it could be a wave in a liquid:

Waves 2d.png

Here, the particles of the liquid are vertically displaced while waves propagate horizontally (or we can see the pressure or stress vary in a solid medium producing sound).

First, we consider the spatial variable, $x\in {\bf Z}\times {\bf Z}$. We think of the array -- at rest -- as the standard $2$-dimensional cubical complex $L={\mathbb R}^2$. The complex may be given a geometry: each object has a (possibly variable) distances $\Delta x, \Delta y$ to its neighbors and the distance between the centers of the springs has length $\Delta x^\star, \Delta y^\star$. We think of $u$ as a form of degree $0$ -- with respect to $x,y$.

R complex dim 2.png

According to Hooke's law, the force exerted by the spring is $$F_{Hooke} = -k df,$$ where $df\in R$ is the displacement of the end of the spring from its equilibrium state and the constant, stiffness, $k\in R$ reflects the physical properties of the spring. If this is the spring that connects locations $x$ and $x+1$, its displacement is the difference of the displacements of the two objects. In other words, we have: $$df=u(x+1) - u(x).$$ Therefore, the force of this spring is $$H_{x,x+1} = k \Big[ u(x+1) - u(x) \Big].$$ Since $k$ can be location-dependent, it is a $1$-form over $L$.



Note that for a constant $k$, we are dealing with the second derivative of the $0$-form $u$ with respect to space: $$u' '=\star d_x\star d_xu = \Delta u.$$ Compare it to the second derivative of a $1$-form $U$ with respect to space: $$U' '=d_x\star d_x\star U = \Delta U,$$ which we used to model $1$-dimensional diffusion. The difference is seen in the two different starting points in the same Hodge duality diagram: $$ \newcommand{\ra}[1]{\!\!\!\!\!\!\!\xrightarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\da}[1]{\left\downarrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} \newcommand{\la}[1]{\!\!\!\!\!\!\!\xleftarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\ua}[1]{\left\uparrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} % \begin{array}{ccccccccccc} u\in & C ^0({\mathbb R}^2) \ & \ra{d_x} & C ^1({\mathbb R}^2) &\ni U \\ & \ua{\star} & \ne & \da{\star} \\ & C ^1({\mathbb R}^2^\star) \ & \la{d_x} & C ^0({\mathbb R}^2^\star)\\ \end{array} $$ Then, $$d_xu' ' = (d_xu)' '.$$

Second, we consider the temporal variable, $t\in {\bf Z}$. We think of time as the standard $1$-dimensional cubical complex ${\mathbb R}_t$. The complex is also given a geometry. It is natural to assume that the geometry has no curvature, but each increment of time may have a different duration (and, possibly, $\Delta t \ne \Delta t^\star$). We think of $u$ as a form of degree $0$ with respect to $t$.

Now suppose that each object has mass $m$. Then, by the Second Newton's Law, the total force is $$F=m \cdot a,$$ where $a$ is the acceleration. It is the second derivative with respect to time, i.e., this $0$-form: $$a=u_{tt}:=\star d_t \star d_t u . $$ The mass $m$ is a $0$-form too and so is $F$. Note that the stiffness $k$ is also a $0$-form with respect to time.

Now, with these two forces being equal, we have derived the wave equation of differential forms: $$\begin{array}{|c|} \hline \\ \quad m u_{tt} = (k^\star u_x)_x. \quad \\ \\ \hline \end{array}$$

If $k$ and $m$ are constant forms (and $R$ is a field), the wave equation takes a familiar shape: $$u_{tt}=\tfrac{k}{m}u_{xx}.$$

Exercise. Derive the dual (with respect to space) wave PDE.

We next consider an array of objects connected by springs, both vertical and horizontal:

Array of masses dim 2.png

The forces exerted on the object at location $x$ are the four forces of the four springs attached to it: $$\begin{array}{llll} H & = H_{x,x-1} + H_{x,x+1} + H_{y,y-1} + H_{y,y+1}\\ & = k[ u(x-1,y) - u(x,y) ] \\ & + k[ u(x+1,y) - u(x,y) ] \\ & + k[ u(x,y-1) - u(x,y) ] \\ & + k[ u(x,y+1) - u(x,y) ] . \end{array}$$

We still consider only $0$- and $1$-forms but on the standard $2$-dimensional cubical complex $L={\mathbb R}^2$. Hodge duality is slightly more complicated here. As an example, these are a $1$-form $\varphi$ and its dual $1$-form $\varphi^*$:

Hodge duality of forms.png

Just as in the $1$-dimensional case, each bracketed term in the expression for $F$ is the exterior derivative: two with respect to $x$ and two with respect to $y$: $$\begin{array}{llll} k[ u(x-1,y) - u(x,y) ] &= kd_xu([x,x-1],y), \\ k[ u(x+1,y) - u(x,y) ] &= kd_xu([x,x+1],y), \\ k[ u(x,y-1) - u(x,y) ] &= kd_yu(x,[y,y-1]),\\ k[ u(x,y+1) - u(x,y) ] &= kd_yu(x,[y,y+1]). \end{array}$$ We can rearrange these terms as they all start from $(x,y)$: $$H= kdu\left\{\begin{array}{llll} & & +\{x\}\times [y,y+1] \\ &+[x,x-1]\times \{y\} & & +[x,x+1]\times \{y\}\\ & & +\{x\}\times [y,y-1] \end{array}\right\},$$ where $d=(d_x,d_y)$. To get the duals of these edges, we just rotate them counterclockwise. Then, $$H= kd^\star u\left\{\begin{array}{llll} & & +[x^+,x^-]\times \{y^+\} \\ &+\{x^-\}\times[y^+,y^-] & & +\{x^+\}\times[y^-,y^+]\\ & & +[x^-,x^+]\times \{y^-\} \end{array}\right\},$$ where “$^\pm$” stands for “$\pm 1/2$”.

Observe that the dual edges are aligned counterclockwise along the boundary of the square neighborhood $[x^-,x^+]\times [y^-,y^+]$ of the point $(x,y)$. That neighborhood is the Hodge dual of this point. We recognize this expression as a line integral: $$H= \displaystyle\int_{\partial (\star (x,y))} \star kdu.$$

Now by the Stokes Theorem, the integral is equal to: $$H= \star d_x \star kd_xu .$$ Since the left-hand side is the same as before, we have the same wave equation: $$m u_{tt} = (k^\star u_x)_x.$$

In general, the medium may be non-uniform and anisotropic, such as wood:

Wood.png

We model the medium with a graph of springs and objects with a possibly non-trivial geometry:

Graph of masses and springs.png

We are now in the same place as with the diffusion equation. We split the data into three categories:

  • 1. the adjacency of the springs (and the objects) is the topology,
  • 2. the lengths of the springs (and the angles and the areas of their cross-sections) is the geometry, and
  • 3. the Hooke's constants of the springs is the physics. $\\$

They are given by, respectively:

  • 1. the cell complex $L$,
  • 2. the Hodge star operator $\star^m :C^m(L)\to C^{n-m}(L^\star)$, and
  • 3. the primal $1$-form $k\in C^1(L)$.

The two complexes dual to each other are shown below:

Graph of masses and springs -- complexes.png

The total force that affects the object located at vertex $x$ in $L$ is $$F= \star \displaystyle\int_{\partial (\star x)} \star kdu.$$ Therefore, we end up with the same wave equation as above. Its right-hand side is seen as the full circle in the Hodge duality diagram: $$ \newcommand{\ra}[1]{\!\!\!\!\!\!\!\xrightarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\da}[1]{\left\downarrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} \newcommand{\la}[1]{\!\!\!\!\!\!\!\xleftarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\ua}[1]{\left\uparrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} % \begin{array}{ccccccccccc} u\in & C ^0(L) & \ra{\quad d_x \quad} & C ^1(L) & \\ &\quad\quad \quad\ua{\times\frac{|a^0|}{|b^n|}} & \ne & \quad\da{\times\frac{|b^{n-1}|}{|a^1|}} \\ & C ^n(L^\star)& \la{\quad d_x \quad} & C ^{n-1}(L^\star),\\ \end{array} $$ where $a$ and $b$ are dual.

The geometry of the primal complex $L$ is given first by the lengths of the springs. What geometry should we give to the dual complex $K=L^\star$?

Graph of masses and springs -- geometry.png

First, the meaning of the coefficients of the Hodge star operator are revealed to be represented by the stiffness $k(a)$ of spring $a$. In fact, it is known to be directly proportional to its cross-sectional area $|b|$ and inversely proportional to its length $|a|$: $$k(a):=E\frac {|b|} {|a|},$$ where $E$ is the “elastic modulus” of the spring. Plainly, when the angles are right, we have simply $b=a^\star$.

Second, we assign the reciprocals of the masses to be the $n$-volumes of the dual $n$-cells: $$|x^\star|:=\frac{1}{m(x)}.$$

Then we have the simplified -- with the physics taken care of by the geometry -- wave equation, $$u_{tt}=(E^\star u_{x})_x,$$ where $E$ is the $1$-form of elasticity. Its right-hand side is seen as the full circle in the Hodge duality diagram modified accordingly: $$ \newcommand{\ra}[1]{\!\!\!\!\!\!\!\xrightarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\da}[1]{\left\downarrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} \newcommand{\la}[1]{\!\!\!\!\!\!\!\xleftarrow{\quad#1\quad}\!\!\!\!\!} \newcommand{\ua}[1]{\left\uparrow{\scriptstyle#1}\vphantom{\displaystyle\int_0^1}\right.} % \begin{array}{ccccccccccc} u\in & C ^0(L) & \ra{\quad d_x \quad} & C ^{1}(L) & \\ &\quad\quad \quad\ua{\times\frac{1}{m(b^n)}} & \ne & \quad\da{\times k(a^1)} \\ & C ^n(L^\star)& \la{\quad d_x \quad} & C ^{n-1}(L^\star)\\ \end{array} $$

Next we simulate wave propagation with a spreadsheet. The $2$-dimensional case is treated with the formula given above. This is the result of a circular wave with a single source bouncing off the walls of a square box.

Wave from single point.png

Exercise. Implement the wave illustrated on the first page of this chapter.

Example. The choice of $$K={\mathbb R}^2,\quad R={\bf Z}_2,$$ produces this simple “cellular automaton”:

Wave Z2 automaton.png

$\square$