This site is being phased out.
Parametric surfaces
Let's represent the sphere as a parametric surface.
Start with the spherical coordinates:
$$x = r \cos {\theta} \sin {\varphi}$$
$$y = r \sin {\theta} \sin {\varphi}$$
$$z = \cos {\varphi}$$
where 2. $0 \leq {\theta} \leq 2{\pi}$ 3. $0 \leq {\varphi} \leq {\pi}$ 1. $r \geq 0$
This will be the domain of this function:
$$S: D(S) {\rightarrow} {\bf R}^3, D(S) \subset {\bf R}^3,$$
$$S'|_{(0, \theta, \varphi)} = 0.$$
To parametrize the sphere, $r = 1$, fixed. For
$$f: D(f) {\rightarrow} {\bf R}^3,$$
$$D(f) = \{ ( {\theta}, {\varphi} ): 0 \leq {\theta} \leq 2{\pi}, 0 \leq {\varphi} \leq {\pi} \}.$$
The image of $f$ is the unit sphere but the domain is a rectangle.
$$x = \cos {\theta} \sin {\varphi},$$
$$y = \sin {\theta} \sin {\varphi},$$
$$z = \cos {\varphi}.$$
(1) ${\rm Im}(f) \subset S( 0, 1 )$. How?
$$\begin{array}{} ( \cos {\theta} \sin {\varphi} )^2 + ( \sin {\theta} \sin {\varphi} )^2 + ( \cos {\varphi} )^2 &= \cos^2 {\theta} \sin^2 {\varphi} + \sin^2 {\theta} \sin^2 {\varphi} + \cos^2 {\varphi} \\ &= \sin^2 {\varphi} ( \cos^2 {\theta} + \sin^2 {\theta} ) + \cos^2 {\varphi} \\ &= \sin^2 {\varphi} + \cos^2 {\varphi} \\ &= 1. \end{array}$$
(3) $f( 0, {\varphi} ) = f ( 2{\pi}, {\varphi} )$, so we glue $( 0, {\varphi} )$ to $( 2{\pi}, {\varphi} )$ for each ${\varphi}$, so the left edge is glued to the right edge. The lower edge is $f( {\theta}, 0 ) = f ( {\theta}', 0 )$. "Image". Indeed:
$x = \cos {\theta} \sin {\varphi}$$
$f: y = \sin {\theta} \sin {\varphi}$$
$z = \cos {\varphi}$$
hence $f( {\theta}, 0 ) = ( 0, 0, 1 ) = f ( {\theta}', 0 )$.
So the points on the lower edge are glued together to a single point. The same holds for the upper edge.
(4) Find the best affine approximation of $f$ at $( 0, \frac{\pi}{2} )$ (i.e. find the tangent plane to the surface at a point).
$$\frac{\partial f_1}{\partial \theta} = - \sin {\theta} \sin {\varphi}, \frac{\partial f_1}{\partial \varphi} = \cos {\theta} \cos {\varphi}$$
$$\frac{\partial f_2}{\partial \theta} = \cos {\theta} \sin {\varphi}, \frac{\partial f_2}{\partial {\varphi}} = \sin {\theta} \cos {\varphi}$$
$$\frac{\partial f_3}{\partial {\theta}} = 0, \frac{\partial f_3}{\partial {\varphi}} = -\sin {\varphi},$$
plug in ${\theta} = 0$, ${\varphi} = \frac{\pi}{2}$:
$$f'( 0, \frac{\pi}{2} ) = \left| \begin{array}{} 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{array} \right|$$
and
$$f(0, \frac{\pi}{2}) = \left| \begin{array}{} 1 \\ 0 \\ 0 \end{array} \right|$$
Then
$$T( {\theta}, {\varphi} ) = \left| \begin{array}{} 1 \\ 0 \\ 0 \end{array} \right| + \left| \begin{array}{} 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{array} \right| \cdot ([ \theta, \varphi]^t - [0, \frac{\pi}{2} ] ^t)$$
See also